Предыдущая     |         Содержание     |    следующая

Электровыделение металлов

Анодные процессы в системах металл — неводный растворитель

Катодному восстановлению металлов в органических средах в общем случае могут соответствовать анодный процесс ионизации металла, разряда анионов (фона или специальных добавок), окисление растворителя. В зависимости от материала анода, природы восстанавливающегося на катоде металла, концентрации электролита и условий эксперимента преобладать будет один из этих процессов. Если анодным материалом служит металл, ионы которого разряжаются катодно, анодное растворение металла происходит более активно, чем в водных растворах. С анодным растворением металлов неразрывно связан процесс коррозии.

Согласно современным представлениям, металлы в растворах электролитов растворяются преимущественно по электрохимическому механизму. Подход к анодному растворению металлов и коррозии с единых позиций теории электрохимической кинетики, применение для изучения коррозии электрохимических методов исследования углубили и расширили теоретические представления об этих процессах, и на их основе стали возможны предварительные оценки коррозионной стойкости металлов и сплавов в различных условиях, разработки принципов коррозионной защиты материалов. Однако коррозионная наука в последние три десятилетия развивалась в основном применительно к водным растворам. Особенности процессов анодного растворения и коррозии металлов в органических электролитах изучены недостаточно, хотя необходимость таких сведений в связи со всевозрастающей ролью органических растворителей в качестве технологических средств очевидна.

Исследование анодных и коррозионных процессов проводилось с помощью всего арсенала электрохимических методов, чаще всего поляризации в потенциостатическом, потенциодинамическом и гальваностатическом режимах, в сочетании с чисто коррозионными методами — весовым, рентгенографическим, спектральным и т.д..

Судя по экспериментальным данным, многие из теоретических закономерностей в одинаковой степени правомочны для водных и органических электролитов. Это представления о стадийности процесса ионизации металла; о непосредственном участии в анодном растворении металлов компонентов агрессивной среды — анионов; о связи пассивации металлов с адсорбционными явлениями и т. д. Однако в кинетике анодного растворения и коррозионного разрушения металлов в водных и неводных средах имеются и существенные различия. Как отмечалось, в целом металлы и сплавы в органических растворителях подвергаются более активному растворению, многие из них теряют способность пассивироваться при анодной поляризации, резко снижается защитное действие органических адсорбционных ингибиторов. До недавнего времени вообще считалось необходимым условием пассивации металлов в органической среде некоторая критическая концентрация воды, величина которой зависит от природы металла и состава раствора или же растворенного молекулярного кислорода.

В связи с повышением агрессивности органических сред по сравнению с водными возрастают трудности в подборе конструкционных материалов для них и соответственно необходимость накопления данных о механизмах и кинетике сопряженных электрохимических реакций коррозионного процесса. Имеющиеся в литературе сведения в настоящее время несистематичны и ограниченны. Это относится в первую очередь к металлам пятой, шестой и седьмой групп.